第三十卷 第九期 - 2016年九月二日 PDF
Counter
利用水熱法成長氧化鋅奈米柱提升氮化鎵發光二極體
張守進1*、林男明2、許世昌2
1 國立成功大學微電子所
2 國立台南大學電機工程學系
 
字體放大
於固態照明來說,需要提供大的功率為大型設備所使用。所輸入的電功率將被部分轉換成輸出光,而其餘的功率將被轉換成熱能。如果沒有一個良好的熱穩定性,產生的熱量很容易使元件損壞。因此提高大功率LED的熱穩定性這是非常重要的。然而因為藍寶石基板的折射率比空氣高,會導致菲涅耳反射(Fresnel reflections)的產生,大部分在主動層產生的光在LED內吸收,然後轉化為熱能。利用一簡單的技術將藍寶石基板的表面粗糙化,則可以用來破壞內部全反射[1]。研究指出也可以利用SiO2,ITO,或SiNx奈米柱來增加的GaN LED的光萃取效率 [2] - [4]。近年來因為ZnO奈米柱的製程簡單和成本效率的關係,也常用來增加GaN LED的光萃取效率[5] - [10]。近年來在化學技術方面已經引起越來越多的關注。因此在文中我們提出使用藍寶石基板上成長氧化鋅奈米柱,目地以提高光萃取。本實驗氧化鋅奈米柱使用水熱法成長藍寶石基板上,此方法能夠達到大面積成長、低成本以及可靠性高。

圖一中分別展示出五個LED的光輸出功率-電流特性。在輸入350 mA電流下,五個LED的輸出功率分別為 361.7, 420.7, 426.8, 448.2, and 430.4 mW。經由圖中可以發現LED I 遠小於其他LED的表現,並且在LED V的輸出功率能夠提高24%。這種輸出功率大幅度的成長可以歸因於氧化鋅奈米柱能夠降低菲涅爾反射的功用。我們的方法類似於[5]。文獻中的氧化鋅奈米柱提出了兩步驟的水熱法,第一步驟使用含水醋酸鋅溶解至乙醇溶夜中隨後將基板放置當中,接著退火在100 °C下三分鐘形成氧化鋅晶種層。第二步驟使用硝酸鋅及六亞甲基四胺溶解至DI水中,隨後放入已成長好晶種層的基板,水熱法的溫度控制在95 °C下三個小時形成氧化鋅奈米柱。本實驗與文獻相比之下,我們採取通過連續離子層吸附和反應及水熱法成長氧化鋅奈米柱只需1.5個小時,此方法優點為能夠有效控制氧化鋅奈米柱的密度。另外在2011年有文獻提出垂直氧化鋅奈米柱能夠提升氮化鎵發光二極體的光萃取,經由模擬結果得知垂直氧化鋅奈米柱能夠減少光線的反射,再次模擬的實驗中吻合本實驗的結果[7]。
圖一、分別為五個發光二極體的輸出功率
圖二、LED III、LED IV和LED V在注入電流為350 mA時(a) x-方向和(b) y-方向的發光強度分布圖。

圖二 (a)和(b)為LED III、LED IV和LED V在注入電流為350 mA時x-方向及y-方向的發光強度分布圖。LED IV的輸出光強度大於LED III和LED V。圖三為LED I 和LED IV的光輸出圖型。由於在量測過程中,我們注入350 mA的直流電流給這兩個LED,因此可以清楚地觀測到沒有ZnO 奈米棒的FC LED (即LED I)是近乎水平方向。另一方面,有ZnO 奈米棒的FC LED (即LED IV) 在垂直方的EL強度大於沒有ZnO 奈米棒的FC LED。因此,我們得知經由ZnO奈米棒的修示可以有效的的提升光的輸出效率。
圖三、量測兩個LED的光輸出圖型。


參考文獻:
[1] S. J. Chang, W. S. Chen, S. C. Shei, C. F. Shen, T. K. Ko, J. M. Tsai, W. C. Lai, J. K. Sheu, A. J. Lin, S. C. Hung,  “GaN-based power flip-chip light-emitting diodes with Cu submount,” IEEE J. Sel. Topics Quantum Electron ., vol. 15, no. 4, pp. 1287–1291, 2009.
[2] S. C. Shei, “SILAR-based application of various nanopillars on GaNbased LED to enhance light-extraction efficiency,” J. Nanomater ., vol. 2013, art. 653981, 2013.
[3] X. F. Zeng, S. C. Shei, and S. J. Chang, “SiO2 nanopillars on microscale roughened surface of GaN-based light-emitting diodes by SILAR-based method,” J. Nanomater ., vol. 2013, art. 753230, 2013.
[4] S. C. Shei, X. F. Zeng, N. M. Lin, and S. J. Chang, “SiNx nanopillars on AlGaInP-based light-emitting diodes to enhance light extraction using self-assembly ZnO nanomask coating by successive ionic layer adsorption and reaction method,” Thin Solid films, vol. 570, pp. 230–234, 2014.
[5] Y. S. Lee, Y. I. Jung, B.Y. Noh, and I.K. Park, “Emission pattern control of GaN-based light-emitting diodes with ZnO nanostructures,” Appl. Phys. Exp., vol. 4, pp. 112101-1– 112101-3, 2011.
[6] D. K. Hui, W. L. Shan, H. D. Xiu, S. C. Beng, and C. S. Jin, “Influence of size of ZnO nanorods on light extraction enhancement of GaN-based light-emitting diodes,” Chin. Phys. Lett., vol. 28, pp. 098501-1–098501-4, 2011.
[7] K. Dai, C. S. Soh, S. J. Chua, L. Wang, and D. Huang, “Influence of the alignment of ZnO nanorod arrays on light extraction enhancement of GaN-based light-emitting diodes,” J. Appl. Phy., vol. 109, pp. 083110–1– 083110-5, 2011.
[8] J. M. Lee, J. Yi, W. W. Lee, H. Y. Jeong, T. Jung, Y. Kim, and W. I. Park, “ZnO nanorods- graphene hybrid structures for enhanced current spreading and light extraction in GaN-based light emitting diodes,” Appl. Phys. Lett., vol. 100, pp. 061107-1–061107-5, 2012.
[9] C.Y. Cho, N. Y. Kim, J. W. Kang, Y. C. Leem, S. H. Hong, W. Lim, S. T. Kim, and S. J. Park, “Improved light extraction efficiency in blue light-emitting diodes by SiO2 -coated ZnO nanorod arrays,” Appl. Phys. Exp., vol. 6, pp. 042102-1–042102-3, 2013.
[10] Z. Yin, X. Y. Liu, H. C. Yao, Y. Z. Wu, X. P. Hao, M. Han, and X. G. Xu, “Light extraction enhancement of GaN LEDs by hybrid ZnO micro-cylinders and nanorods array,” IEEE Photon. Technol. Lett., vol. 25, no. 20, pp. 1989–1992, 2013.
< 上一篇
下一篇 >
Copyright National Cheng Kung University