第二十九卷 第七期 - 2015年九月四日 PDF
Counter
莫拉克颱風後的影響 – 複合型災害模擬的挑戰
陳俞旭2, 郭玉樹1, 賴文基2, 蔡元融2, 李心平2, 陳昆廷1, 謝正倫1,2,*
1 國立成功大學水利及海洋工程學系
2 國立成功大學防災研究中心
 
字體放大
到氣候變遷之影響,全台極端天氣出現頻率增高,使得未來災害特性將與過去相當不同,當時雨量超過100公釐容易誘發淺層崩塌、土石流與淹水,而當累積雨量R超過1000公釐,則是誘發深層崩塌與堰塞湖,若兩種條件都達到的話,則會產生複合型災害(圖1)。

在民國98年8月8日~10日的莫拉克風災,颱風及其後續之西南氣流挾其長延時、高強度、高累積雨量及廣範圍的特性,在台灣中南部地區連續四天創下總雨量3,000公釐的降雨紀錄(圖2),同時誘發了深層、淺層等不同規模的崩塌、土石流、堰塞湖及淹水等不同類型的災害(圖3)。

為了重現小林村之災害過程,數值模你為較符合成本之方法,但綜觀目前現有災害模擬方法,均僅針對單一災害類型進行模擬,在各類型災害發生過程、發生條件的銜接上,尚無一架構整合各單一災害類型之模擬方法,因此複合型天然災害模擬工具的了解與開發,有助於分析複合型災害之過程與特性,成為防災工程最重要的研究方向之一。

圖一、未來降雨與發生災害之關係


圖二、莫拉克颱風阿里山站降雨組體圖


圖三、小林村災害照片


圖四、小林村災害模擬架構圖


參考文獻

  1. Chang HH (1998) Generalized computer program: Users’ manual for FLUVIAL-12: Mathematical model for erodible channels, San Diego.
  2. Chang DS, Zhang LM (2010) Simulation of the erosion process of landslide dams due to overtopping considering variations in soil erodibility along depth. Natural Hazards and Earth System Sciences 10(4): 933-946.Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geological society of America bulletin 100: 1054-1068.
  3. Crosta GB, Calvetti F, Imposimato S, et al. (2001) Granular flows and numerical modelling of landslides. Report of DAMOCLES project. pp 16-36.
  4. Crosta GB, Imposimato S, Roddeman DG et al. (2006) Continuum numerical modeling of flow-like landslides, Landslide From Massive Rock Slope Failure. NATO Science Series 49(4): 211-232.
  5. Cundall PA (1971) A computer model for simulating progressive large scale movement in blocky rock systems, Proceedings of the Symposium of the International society of rock mechanics 1: II–8.
  6. Danish Hydraulic Institute (1993) MIKE 21 short description, Danish Hydraulic Institute, Hørsholm, Denmark.
  7. Egashira S, Ashida K (1992) Unified view of the mechanics of debris flow and bed-load. In: Shen HH and Satake M (eds.), Advances in Micromechanics of Granular Materials. pp 391-400.
  8. Egashira S, Miyamoto K, Itoh T (1997) Constitutive equations of debris flow and their applicability, In: Chen CL (eds.), Debris-Flow Hazards Mitigation, Water Resources Engineering Division, American Society of Civil Engineers. pp 340-349.
  9. Itoh T, Egashira S, Miyamoto K (2000) Influence of interparticle friction angle on debris-flows. In: Wieczorek GF and Naeser ND (eds.), Proceedings of the 2nd international conference on debris-flow. pp 219-228.
  10. Iverson RM (1997) The Physics of Debris Flows. Reviews of Geophysics 35: 245–296.
  11. Jia Y, Wang SS (1999) Numerical model for channel flow and morphological change studies. Journal of Hydraulic Engineering 125(9): 924–933.
  12. Miyamoto K (2002) Two dimensional numerical simulation of landslide mass movement. Journal of Erosion Control Engineering 55(2): 5-13. (In Japanese)
  13. Mizuyama T, Satofuka Y, Ogawa K et al. (2006) Estimating the outflow discharge rate from landslide dam outbursts. Disaster Mitigation of Debris flows, Slope Failures and Landslides 1:365-377.
  14. Miyamoto K (2010) Numerical simulation of landslide movement and Unzen-Mayuyama disaster in 1792, Japan, Journal of Disaster Research 5 (3), 280-287.
  15. Nakatani K, Wada T, Satofuka Y, et al. (2008) Development of “Kanako 2D (Ver.2.00),” a user-friendly one- and two-dimensional debris flow simulator equipped with a graphical user interface. International Journal of Erosion Control Engineering 1(2):62-72.
  16. Satofuka Y, Mori T, Mizuyama T, et al. (2010) Prediction of floods caused by landslide dam collapse. Journal of Disaster Research 5(3):288-295.
  17. Schuster RL, Costa JE (1986) A perspective on landslide dams, In: Schuster RL (eds.), Landslide Dams, Processes, Risk and Mitigation. pp 1-20.
  18. Shi GH, Goodman RE (1984) Discontinuous deformation analysis. In: Dowding CH , Singh MM (eds.), Proceedings of the 25th U.S. Symposium on Rock Mechanics. pp 269-277
  19. Shi GH (1993) Block system modeling by discontinuous deformation analysis. Computational Mechanics Publications, London, England. pp  209.
  20. Shieh CL, Wang CM, Chen YS et al. (2010) An overview of disasters resulted from Typhoon Morakot in Taiwan. Journal of Disaster Research 5(3): 236-244.
  21. Pudasaini SP, Wang Y, Hutter K et al. (2005) Modeling debris flows down general channels. Natural Hazards and Earth System Sciences 5: 799–819.
  22. Takahashi T (1981a) Estimation of potential debris flows and their hazardous zones. Journal of Natural Disaster Science 3 (1): 57–89.
  23. Takahashi T (1981b) Debris Flow. Annual Review of Fluid Mechanics 13: 57-77.
  24. Takahashi T, Kuang SF (1988) Hydrograph prediction of debris flow due to failure of landslide dam. Annuals of Disaster Prevention Research Institute 31 B-2:601-615. (In Japanese)
< 上一篇
下一篇 >
Copyright National Cheng Kung University